
923

Distributed Constraint Optimization with Structured
Resource Constraints

Akshat Kumar
Department of Computer

Science
University of Massachusetts,

Amherst
akshat@cs.umass.edu

Boi Faltings
Artificial Intelligence

Laboratory
Swiss Federal Institute of

Technology, Lausanne
boi.faltings@epfl.ch

Adrian Petcu
SAP Research

Zurich, Switzerland
apetcu@gmail.com

ABSTRACT

Distributed constraint optimization (DCOP) provides a frame-
work for coordinated decision making by a team of agents.
Often, during the decision making, capacity constraints on
agents’ resource consumption must be taken into account.
To address such scenarios, an extension of DCOP- Resource
Constrained DCOP- has been proposed. However, certain
type of resources have an additional structure associated
with them and exploiting it can result in more efficient algo-
rithms than possible with a general framework. An example
of these are distribution networks, where the flow of a com-
modity from sources to sinks is limited by the flow capacity
of edges. We present a new model of structured resource
constraints that exploits the acyclicity and the flow con-
servation property of distribution networks. We show how
this model can be used in efficient algorithms for finding
the optimal flow configuration in distribution networks, an
essential problem in managing power distribution networks.
Experiments demonstrate the efficiency and scalability of
our approach on publicly available benchmarks and com-
pare favorably against a specialized solver for this task. Our
results extend significantly the effectiveness of distributed
constraint optimization for practical multi-agent settings.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: [Multiagent
systems, Intelligent agents]

General Terms

Algorithms, Theory

Keywords

Distributed constraint optimization, Power restoration

1. INTRODUCTION
Distributed constraint optimization (DCOP) provides a

framework for multiple agents to coordinate and jointly com-
pute the optimal choice over a set of alternatives encoded
as a constraint network [13, 14]. DCOP has many practical

Cite as: Distributed Constraint Optimization with Structured Resource
Constraints, Akshat Kumar, Boi Faltings and Adrian Petcu, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

applications such as distributed meeting scheduling [10], dis-
tributed planning and resource allocation, target tracking in
sensor networks [13] etc. Most of the current algorithms in
DCOP optimize a single objective function [13, 14, 6, 11, 3].
Often, agents consume resources which have limited capacity
that must not be violated. For example, in the distributed
meeting scheduling problem agents may have a travel bud-
get which can not be exceeded, rooms for the meeting may
have a certain capacity on the number of attendees. Conse-
quently, the search for the optimal solution must also take
into account these resource constraints.

To address optimization with resources, an extension of
DCOP- Resource Constrained DCOP (RCDCOP)- has been
proposed in [2, 12]. It models resources by introducing vir-
tual variables corresponding to each resource and imposes n-
ary constraints among virtual variables and agents to guide
the search mechanism. Adding resources significantly in-
creases the combinatorial aspect of the problem as agents
must reason about the global optimality as well as the re-
sources they consume. While RCDCOP is a general frame-
work for handling resources, some problem domains asso-
ciate additional structure with resources and exploiting it
can yield better, efficient algorithms. We examine one such
domain of distribution networks and show how its structure
can be utilized to counter the additional complexity of re-
source constraints.

Distribution networks describe the flow of a commodity
from a source, where it is produced, to sinks. Such networks
can model many scenarios such as liquids flowing through
a pipe, parts through assembly lines or current through a
power network. Each edge in this network is a conduit for
the commodity and has a certain capacity which caps the
amount of flow through it. In addition, it may incur a cost
when the commodity flows through it. Vertices are the con-
duit junctions or sinks which may consume some of the in-
coming flow and forward the rest on a subset of its incident
edges. This property is also called flow conservation and is
equivalent to Kirchhoff’s current law when the commodity
is electric current. Additionally, the flow from the source to
sinks must take the form of a tree i.e. acyclic, also called
feeder tree in the context of power distribution networks.

The optimization problem we address in such networks is
to determine the configuration of the least cost feeder tree
such that every sink in the network gets fed without violat-
ing the capacity of any edge, assuming there is at least one
such tree. This problem is essential for reconfiguring the
network after the network structure gets disrupted due to

Cite as: Distributed Constraint Optimization with Structured Resource
Constraints, Akshat Kumar, Boi Faltings, Adrian Petcu, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 923–930
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

924

faults such as line failures in power distribution networks.
The key source of complexity in modeling such networks are
the resource constraints (capacity of edges). Our contribu-
tion in modeling such resources is twofold. First, we use the
property of flow acyclicity and flow conservation to develop
an abstract notion of a resource using flow trees. Based on
this notion, we provide a DCOP model of the optimization
problem introduced earlier. Second, we provide an efficient
distributed dynamic programming based algorithm to solve
this model using only linear number of message exchanges.
Our approach is based on DPOP [14], an existing solver for
distributed optimization. Finally, we test on publicly avail-
able realistic power restoration benchmarks and compare
with an existing specialized solver to show the efficiency of
our approach. Next section introduces the motivating power
supply restoration problem.

1.1 Power supply restoration
A power distribution system is a network of electric lines

connected by switching devices (SDs) and fed by circuit
breakers (CBs) [1, 16]. Both SDs and CBs have two device
positions: closed, open. SDs are analogous to sinks (trans-
former stations) which consume some power and forward
the rest on other lines if closed. Open SD stops power flow.
Circuit breakers, which are analogous to power sources, feed
the network when closed. The positions of the devices are
set such that the paths taken by the power of each CB forms
a tree called feeder, and no sink is powered by more than one
power line. In addition, Kirchhoff’s law (or flow conserva-
tion) must hold for all devices and the current load for any
line must not exceed its capacity.

The problem of power supply restoration (PSR) is that
of reconfiguring the network (setting positions of devices)
such that power supply is restored to all affected sinks after
one or more power lines become faulty. Typically, restora-
tion also optimizes certain parameters such as minimizing
switching operations, line losses etc [15]. These objectives
can be modeled using constraints in the DCOP framework.

PSR has received much attention following a series of
power blackouts in U.S. and Europe. Power companies like
EDF in France [15] and NESA in Denmark [8] have shown
much interest in automating this task. Further, DCOP pro-
vides an ideal solution to the demands of an increasingly
deregulated power market from highly regulated monopo-
lies [7]. Co-generation (several small power sources from
wind, solar, thermal etc.) will mean many different inter-
connected power sources that switch on and off making dis-
tribution networks more complex. We need to localize deci-
sion making within the network so that it can scale, that it
can be more robust when power links might fail, and that
it can be safe against central manipulation. Such objectives
are readily achievable using the DCOP framework.

2. BACKGROUND
This section briefly introduces the DCOP model and Re-

source Constrained or Multiply-Constrained DCOP [12, 2],
which extend DCOP by adding support for resources.

A discrete distributed constraint optimization problem
(DCOP) is a tuple < X ,D,F >. X = {X1, ..., Xn} is a
set of variables, and D = {D1, ..., Dn} is a set of finite vari-
able domains. F = {f1, ..., fm} is a set of functions also
called constraints, where each fi is a function with scope
(Xi1 , · · · , Xik), fi : Di1 × .. × Dik → �, which denotes

P
1

P
2

P
3

2

3

4

5

6

7

(a)

L
2

L
3
S
2

S
3

L
4

L
5

S
5

L
6

S
4

S
6

L
7

S
7

P
1

(b)

Figure 1: A power network and a feeder tree.

how much cost is assigned to each possible combination of
values of the involved variables. In a DCOP, each variable
and constraint is owned by an agent. To simplify the no-
tation, we use Xi to denote either the variable itself, or its
agent. The goal is to find a complete instantiation X ∗ for
the variables that minimizes the global cost or

P
i fi under

the assignment X ∗.
Resource Constrained DCOP (RCDCOP) adds support

for resources to the above framework [2, 12]. They are de-
fined by a set R of resources and a set U of requirements.
Each resource ra ∈ R has a capacity C(ra) : R → �. The set
U defines the quantity of resources required by agents i.e.
ui(ra, di) : R×Di → � defines the amount of the resource ra

required by agent i under the assignment di. The global re-
source constraint requires that the capacity of each resource
must not be exceeded i.e. ∀r ∈ R,

P
i ui(r, di) ≤ C(r) un-

der the assignment X ∗. An important generalization is that
each resource requirement u may take any arity leading to
n-ary constraints among agents. This suggests the increased
complexity of solving RCDCOP than DCOP.

3. MODELING THE DISTRIBUTION NET-

WORK
This section describes different aspects of modeling, es-

pecially resources, for the problem of finding optimal con-
figuration of feeder trees. It has been shown that the PSR
task without the capacity constraints is easy and with capac-
ity constraints is NP-hard [8], which further emphasizes the
importance of handling resources. The model we develop
applies to any general distribution network, but for ease of
exposition we will use the PSR problem introduced earlier.

We view a power distribution network as a graph G =
(V, E). Vertices represent power sources (CBs) P and Sinks
S (SDs). A sink Si consumes |Si| units of power. The edges
are the electric lines. To remind the reader, the model must
enforce the following constraints:

• Acyclicity: The path taken by the power from each
source must be a tree. Each sink, line, source must be
part of at most one feeder tree.

• Flow conservation: Kirchhoff’s law must hold for each
device.

• Resource constraints: For each line the current load
must not exceed its capacity.

Figure 1(a) shows a power network. The double circled
nodes are the CBs, rest are sinks. Thick lines supply power

Akshat Kumar, Boi Faltings, Adrian Petcu • Distributed Constraint Optimization with Structured Resource Constraints

925

1

2

3 4

(a)

ra

rb rc

Ag1

Ag3 Ag4

Ag2

(b)

Figure 2: A power network and its equivalent RCD-
COP formulation.

to the connected sinks, rest are open and do not propagate
power. It is easy to see that the path of power for each source
is a tree (Figure 1(b) shows the power path for source P1),
and each sink and line is part of at most one tree.

3.1 Modeling using RCDCOP
In the DCOP framework, we assume that each vertex

of the distribution network is owned by an agent, which
owns all variables, constraints corresponding to that ver-
tex. Without going into details, let us focus on resource
constraints.

Figure 2 shows a network graph and the corresponding
RCDCOP formulation at the abstraction of agents. RCD-
COP introduces three resources: ra, rb, rc, to model the ca-
pacity constraint for each edge. Each agent consumes power
equivalent to its sink requirement i.e. |Si|. Kirchhoff’s law
requires that an edge must carry power for both, the di-
rectly connected sink and others which may receive power
indirectly through it. In the configuration of Figure 2, edge
(1, 2) carries power for both sink 3 and 4 in addition to the
directly connected sink 2.

Consequently, the resource for an edge is connected to all
the agents which may receive power either directly or indi-
rectly through it in some configuration, as it is not known
in advance exactly which of those agents will receive power
through it in the optimal configuration. For example, the
resource ra is connected via a 4-ary constraint to Agents 2,
3 and 4 in Figure 2(b). This n-ary constraint also allows
to interrupt the search if the capacity of the resource gets
violated.

One can easily imagine the complexity of such formula-
tion as the network grows bigger. The resources for edges
near the power source will be involved in prohibitively high
arity constraints. This complexity arises because the RCD-
COP framework cannot model the dependencies between re-
sources introduced by the Kirchhoff’s law other than through
the introduction of constraints that involve all of them. In a
connected network, this eventually leads to a constraint in-
volving all agents and resources, which is prohibitively com-
plex to represent and compute with.

3.2 Modeling using resource quantification
The RCDCOP model can be significantly simplified by

realizing that in a power network, it is not the destination
of the power but its amount that matters. Thus, from the
resource consumption point of view, a configuration where
a power line feeds a set of sinks X is equivalent to one where
it feeds a set of sinks Y as long as the sum of power drawn

by sinks in each set is the same. If all sinks draw about
the same power, we quantize the capacity as the number
of sinks that are fed through a line. This is the approach
taken in [8], where it is assumed that at most 13 sinks can
be fed through any line. It implies that we can discretize
the resource consumption as a Load variable having domain
{0, 1, . . . , 13}.

After quantifying the resource constraints, the only other
requirement is to model the direction of incoming flow for
each sink i.e. determining the incident edge through which
a sink gets power. We will encode this information in a vari-
able called Direction variable for each node in the network.
It also models the constraint that each sink gets fed from a
single incident power line. Next, we give a formal definition
for these variables and constraints.

3.2.1 Variables
Figure 3(a) shows a power network with three nodes. As

mentioned earlier, we create two variables: a Load variable
Li, a Direction variable Di, for each node i in the network
graph, as shown in Figure 3(b). For a sink, the Load variable
models the amount of incoming flow i.e. the electric current.
Since, any sink can be powered by only a single line, the Load
variable also models the capacity for that line. The domain
of the Load variable is the discretized resource. For a power
source, the Load variable models the number of sinks it can
feed i.e. {0, 1, . . . , maxSinks}.

The Direction variable Di models all the possibilities of
feeding a node i i.e. the set of neighbors which can forward
power to i in some configuration. This set can be determined
by performing a DFS traversal of the network graph with
each power source being the DFS root in turn. For example,
in Figure 3(a), sink 2 can receive power either along the path
1 → 2 or 1 → 3 → 2. Therefore, its domain becomes {1, 3}.
Figure 3(b) shows the domain for all Direction variables.
For the power source, the domain includes only a dummy d.

3.2.2 Constraints
Two types of constraints are created. Tree constraints

model the acyclicity of the flow i.e. restrict the power path
to be a tree, and also model the optimization criterion. The
second type, KCL constraints, model the flow conservation
or Kirchhoff’s law.

A binary Tree constraint is created between the Direction
variable for each node i and Direction variables for other
nodes which can receive power from i i.e. have i in their
domain set. For example, in Figure 3(a), nodes 2 and 3 can
receive power from 1. Hence, D1 is connected to both D2

and D3 in Figure 3(c). Similar constraints are also created
for both the nodes 2 and 3 (not shown in figure). Semanti-
cally, in the constraint fi : Di × Dj → �, the first variable
corresponds to the sender node i.e. node 1 in Figure 3(c)
and second variable corresponds to the receiver i.e. nodes 2
or 3. The valuations fi(di, dj) are defined as:

• If di = j i.e. node i receives power from node j
and dj = i i.e. node j receives power from i, then
fi(di, dj) = ∞ as it represents a loop which is not al-
lowed.

• If dj 	= i i.e. node j does not receive power from i
under the current assignment, then fi(di, dj) = 0 as
the current constraint only models the flow from the
node i.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

926

1

32

(a)

={1,3} ={1,2}

L1

D1

L2

D2

L3

D3

Ag1

Ag3Ag2

={d}

g3

(b)

L1 D1

L2 D2 L3D3

Ag1

Ag3Ag2

(c)

L1 D1

L2

D2

L3
D3

Ag1

Ag3Ag2 g3

(d)

Figure 3: A power network and its quantification based model.

• The remaining case is dj = i. fi(di, dj) = cost(i, j),
which gives the cost of flow along the edge (i, j). In a
power network, it becomes the line loss, our optimiza-
tion criterion.

An n-ary KCL constraint is created among the Load vari-
able for each node i and the Load and Direction variables
for other nodes which can receive power from i i.e. have
i in their Direction variable domain. For example, in Fig-
ure 3(d), the shaded region represents the n-ary KCL con-
straint among the Load variable L1 of the sender node 1 and
the Load and Direction variables for nodes 2 and 3 which
can receive power from 1. The purpose of KCL constraint
is to enforce the Kirchhoff’s law for each sender node i.

Let Ri be the set of all the Load and Direction variables
for the nodes which can receive power from i. For example,
R1 = {L2,D2, L3,D3}. Let r denote an assignment to the
variables in the set Ri, and rX be the projection of r on the
variable X. For example, r = (2, 1, 3, 1) is an assignment
for R1 and rL3 = 3. Semantically, in the KCL constraint
fi : Li × Ri → {0,∞}, the first variable corresponds to
the Load variable of the sender, followed by the variables
in the receiver set. The valuation fi(li, r) can take two val-
ues: 0,∞, depending upon if the assignment satisfies the
Kirchhoff’s law or not.

• fi(li, r) = 0, if for all nodes k which receive power from
i under the current assignment r i.e. ∀k s.t. rDk = i,
the sum of their corresponding Load variables respects
the Kirchhoff’s law equation. The equation is li =P

k rLk + |Si|, which simply states that the amount
of incoming power flow to the node i (= li) must be
equal to the sum of power consumed at i (= |Si|) and
the amount of power forwarded to other nodes, which
is

P
k rLk .

• fi(li, r) = ∞, if otherwise.

The advantage of the above model over the RCDCOP
model is that it eliminates the need for very high arity con-
straints to model the Kirchhoff’s law. For any node, the
maximum arity of KCL constraint is the number of immedi-
ate neighbors, and Tree constraints are always binary. For
the RCDCOP model, the n-ary constraint can include all the
agents as opposed to just immediate neighbors. This simpli-
fication is made possible due to resource quantification which
models all possible power flows through a line. However, the
quantification also makes the complexity dependent on the
problem instance. For example, the model in Figure 3(d) can
be solved by DPOP algorithm [14], which has exponential
complexity in the induced width of the graph. The induced

width for our example is 3, and if the discretized domain for
the Load variables is of size k, then the complexity becomes
O(k3). For k = 13 it is solvable, but for a different instance,
where k may be 1000, then the same model becomes very
complex to solve. This limitation affects the scalability and
applicability of this model for different instances and other
kinds of distribution networks, where quantification may not
be even possible.

In the following, we present a further refinement to this
model, which uses feeder trees to model the capacity con-
straints and the flow conservation law, and alleviates the
above limitations of the quantification technique.

3.3 Modeling using resource abstraction
To avoid the need for discretizing resources, we go back to

modeling the set of sinks that are fed through a link, but in a
more structured way. The solution to the flow configuration
problem can be thought of as a collection of feeder trees
which describe the power path from each power source. For
example, the tree in Figure 1(b) describes the power flow
from source P1 in Figure 1(a). The root of this tree is the
power source, P1. The structure of this tree can be defined
recursively. Each node Li of this tree corresponds to the
node i in the power network which receives power from the
current source, P1. The children of a node Li include: the
sink of the node i, and nodes Ljs which receive power from
i. For example, in Figure 1(a), node 3 forwards power to
both the nodes 4 and 5. Therefore, the children of L3 in the
feeder tree include L4 and L5 as well as its own sink S3. We
call each Li in such trees a load abstraction associated with
the node i in the distribution network. Li symbolizes the
incoming flow to the node i and is used to describe feeder
tree configurations.

The feeder tree structure offers three distinct advantages.
First, the Kirchhoff’s law or flow conservation is implicitly
modeled. The children of each Li in this tree model how the
incoming power at node i is used: Si models the consump-
tion for the sink at i, and other children of Li model where
the rest of the power is forwarded. Further, feeder trees re-
flect that power path has to be acyclic. Second, the capacity
constraint for each line can be modeled easily. For this, we
evaluate each node of this tree bottom up. For example, in
Figure 1(b), |L7| = |S7| and L6 = |S6|+|L7|, which simplifies
to |L6| = |S6| + |S7|. Thus, each Li in this tree can be ex-
pressed as a sum of sinks, which can be evaluated easily. To
enforce the capacity constraint, we ensure that ∀i |Li| ≤ lτ ,
where lτ is the capacity of a line. If a tree does not satisfy
this constraint, then it is deemed inconsistent and can not
become part of the solution.

Akshat Kumar, Boi Faltings, Adrian Petcu • Distributed Constraint Optimization with Structured Resource Constraints

927

Finally, the search for the optimal solution can be modeled
as a search for the best configuration in the space of all possi-
ble feeder trees. This type of search has a distinct advantage-
it does not require to quantify the capacity of a line. Thus
it offers a generic model for all distribution networks and
the complexity does not depend on the granularity of the
discretization. This change in the search methodology is re-
flected in the way we will define constraints for this model.
The model we described below borrows many concepts from
the quantification model, but models constraint valuations
differently.

3.3.1 Variables
Only the Direction variables are created for each node

in the network graph. These variables are analogous to the
Direction variables in the quantification model and their do-
main is defined in the same way (see Section 3.2.1).

3.3.2 Constraints
Since, there are no Load variables, a single n-ary con-

straint is created, which models both the Tree constraint and
the KCL constraint. Similar to the quantification model,
this constraint is created among the Direction variable (in-
stead of the Load variable, as there are none) for each node
i and Direction variables for other nodes which can receive
power from i. We define the receiver set Ri as in the quan-
tification model, except that it only contains Direction vari-
ables. The semantics of this constraint: fi : Di×Ri → Δ×�,
has similar meaning as in the quantification model. The first
variable corresponds to the sender, followed by the variables
in receiver set. This constraint produces a mapping from
the input assignment to the feeder tree it represents and the
cost of this feeder tree. Δ is the space of all possible feeder
trees and � represents the real valued space of costs associ-
ated with such trees. This mapping is the result of change
in search methodology, which is now performed in the space
of feeder trees. fi(di, r) is defined as:

• = (φ,∞), if the assignment represents a loop (for de-
tails see Tree constraint in Section 3.2.2).

• = (δ, cδ), where δ is a depth 1 feeder tree and cδ is
the cost of this tree. The root of δ is Li, the load
abstraction associated with the sender node i. The
children of Li include the sink Si for the node i and
all other nodes which receive power from i under the
current assignment r i.e. Lk ∈ Children(Li) iff rDk =
i, and the cost is cδ =

P
k cost(i, k).

It is easy to see that the above constraint represents Kirch-
hoff’s law. Root Li denotes the incoming power flow to the
node i. Its children describe how this power is consumed: Si

denotes the own consumption at i and Lks denote the nodes
where the rest is forwarded. For example, consider the con-
straint f1(D1 = d,D2 = 1,D3 = 2)) corresponding to sender
node 1 in Figure 3, which implies only D2 receives power
from 1 under the current assignment. Hence, the feeder tree

mapping is:

L1

S1L2 . The cost of this tree is cost(1, 2).
In contrast to the RCDCOP model where an n-ary con-

straint can include all the nodes in the power network, the
maximum arity of constraints in this model is the number
of immediate neighbors for any node. The reduction in com-
plexity is easily evident. This is made possible as the ab-

straction based model can handle Kirchhoff’s law using par-
tial feeder trees, whereas RCDCOP resorts to making n-ary
constraints that involve all the nodes because it can not im-
plicitly model the dependencies induced by Kirchhoff’s law.

3.3.3 Inconsistent and Dominated tree pruning
For the capacity constraints, the evaluation of each node

in a tree must be smaller than the capacity threshold lτ , oth-
erwise the tree is inconsistent and can be pruned. However,
for some trees this evaluation can not be performed. For
our last example, |L1| = |L2| + |S1|. Since we do not know
L2 at this point, L1 can not be evaluated. Such trees are
called partial feeder trees, as the complete power path from
L2 is not known, and are retained until they become com-
plete i.e. all the leaves are sinks, implying we can evaluate
all nodes. The pruning can still be accelerated by consider-
ing the bounds on the evaluation of such trees. For the last
example, it holds that |L1| ≥ |S1| and if |S1| > lτ , then this
tree can be safely pruned. Next, we describe the domination
based pruning which will become useful during the dynamic
programming step for solving this model.

When there are two alternative complete feeder trees that
a) have the same root and b) feed the same set of nodes,
then the one with higher cost can be eliminated as it is
dominated and will never be part of an optimal solution.
The dominance based pruning holds only for complete trees,
not for partial trees. We do not give a formal proof due to
space constraints. However, the intuitive reason is that the
only uncertainty in such trees is how the root gets fed, while
the downstream path till the destination sinks is known.
Out of various options of feeding an isolated subnetwork via
a common node, the one which has the lower cost is always
preferred and can be the part of an optimal solution.

For the optimization task i.e. minimizing
P

i fi, the
P

operator has to be redefined for feeder trees, as now each fi

is a mapping to trees instead of real valued costs. This op-
erator also has an intuitive meaning in the context of trees.
Each fi gives a partial feeder tree. The

P
operator provides

a way to combine two partial trees, and its repeated appli-
cation will reduce the partial nature of trees until we get the
solution tree, which describes the complete power path from
source to destination sinks.

3.3.4 Combining feeder trees
Two trees δi and δj rooted at Li and Lj are combinable

if the root of one tree occurs as a leaf node in the other
tree and other than that they do not have any common
node. The former is called the child and the latter is called
the parent. The combined tree, δk, is given by embedding
the child tree in the parent. The cost of δk is the sum of
the cost of combining trees. The

P
(sum) operator applies

to two feeder trees that are either combinable or disjoint,
and produces their combination or a collection of disjoint
trees as appropriate. For example, in Figure 3, the sum
of f(D1 = d,D2 = 1,D3 = 1) and f(D3 = 1,D2 = 1) is

given by
P

(

L1

S1L3L2 ,

L3

S3) =

L1

S1L3

S3

L2

. In this
example, the second tree, L3 → S3, is the child, as its root
L3 occurs as a leaf in the first tree. It is easily observable
that the

P
operator reduces the partial nature of trees. For

example, in the combined tree, the power path from L1 till

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

928

the sink S3 is known, which was known neither in the first
tree nor in the second.

It turns out that any two feeder trees, δi, δj , that are
selected for join by the

P
operator are either disjoint or

always satisfy the conditions for combination. Due to space
constraints we give an informal proof sketch. Let us suppose
that the two trees share a node Lk which violates the com-
bination conditions. Since, the root node can not be shared
(if it was, then it implies we are adding the same constraint
twice, which is not possible), Lk must be an internal node or
a leaf. Let Lk′ be the first common node on the path from
Lk (including Lk) to the root in both the trees such that its

parent in the both the trees is different i.e. Lδi
P (k′) 	= L

δj

P (k′).

It can be shown that such a node always exists. This condi-
tion implies that node k′ receives power via different sources
as implied in the first and second tree configuration. This
is not possible, as the Direction variable for k′ enforces that
it should receive power from a single node in both the con-
figurations. Hence, this is a contradiction, implying the two
trees never violate the combination property.

In the next section, we describe a dynamic programming
based approach to find the optimal flow configuration using
the above model. It is based on DPOP [14], an efficient
algorithm for solving DCOP.

4. DYNAMIC PROGRAMMING OPTIMIZA-

TION
As constraints for the abstraction model give a mapping

to the space of feeder trees, existing dynamic programming
algorithm DPOP [14] can not be used. The algorithm we
propose is based on DPOP, but changes its bottom up util
propagation phase to deal with feeder trees.

The primal graph of a constraint network is an undirected
graph with variables as vertices and an edge connects vari-
ables that appear in the scope of same constraint function.
Our algorithm works on the DFS traversal of the primal
graph for the given constraint network. DFS trees have al-
ready been investigated as a means to boost search [5, 4].
Due to the relative independence of nodes lying in different
branches of the DFS tree, it is possible to perform search
in parallel on independent branches, and then combine the
results. In a DFS tree, P (Xi) refers to the parent of the
node Xi, C(Xi) to the children, PP (Xi) to the pseudo par-
ents of Xi and Sepi to the seperator of Xi. For DFS related
definitions see [14].

As with DPOP, our algorithm has three phases. We will
describe in detail only the UTIL phase, which is significantly
different from DPOP.

Phase 1 - a DFS traversal of the graph is generated us-
ing a distributed algorithm (see [14]). The outcome of this
protocol is that all nodes consistently label each other as par-
ent/child or pseudoparent/pseudochild, and edges are iden-
tified as tree/back edges. The DFS tree thus obtained serves
as a communication structure for the other 2 phases of the
algorithm.

Phase 2 - UTIL propagation: This is a bottom up pass
on the DFS arrangement in which the utility information is
aggregated and propagated from the leaves towards the root
(in the form of UTIL messages), from each node to its parent
through tree edges but not back edges. A UTIL message
sent by a node Xi to its parent P (Xi) is a multidimensional
matrix which informs P (Xi) how much utility the subtree

rooted at Xi provides for different assignments of values to
the variables that define the separator Sepi for the subtree.
In our case, the utility for an assignment u is the feeder tree
and its cost i.e. util(u) = (δ,−cδ) (costs can be treated
as negative utilities). In more detail, the agents perform
following steps:

1. Wait for UTIL messages from all their children, and
store them.

2. Perform an aggregation: join messages from children,
and also the relations they have with their parents and
pseudoparents.

3. Perform an optimization: project themselves out of the
resulting join by picking their optimal values for each
combination of values of the other variables in the join.

4. Send the result to parent as a new UTIL message.

Aggregations apply the JOIN operator and optimization
applies the PROJECT operator as described below. Let
UTILj

i denote the message sent by Xi to its parent Xj and

dim(UTILj
i) denote its dimensions i.e. the set of variable

defining this message.

Definition 1 (JOIN). The ⊕ operator: UTILj
i⊕UTILj

k

is the join of two UTIL matrices. It has dimensions as
dim(UTILj

i) ∪ dim(UTILj
k). The value of each cell in the

join is obtained by applying the
P

operator to the corre-
sponding cells in the source matrices.

The above join operator easily extends to feeder trees as
we have defined the

P
operator which combines feeder trees

(see Section 3.3.4).

Definition 2 (PROJECT). The ⊥ operator: if Xi ∈
dim(UTILj

i), then UTILj
i ⊥Xi is the projection through op-

timization of the UTILj
i matrix along the Xi axis: for each

instantiation u of the variables in {dim(UTILj
i) − Xi}, all

the corresponding values from UTILj
i (one for each value of

Xi) are tried, and the one which gives maximal utility (or
minimal cost) is chosen. That is, the utility util⊥(u) for
the instantiation u in the matrix UTILj

i ⊥Xi is given by

util⊥(u) = maxXi utilji (u, x).

However, we can apply the above projection operator only
in the case of complete feeder trees (which have all leaves
as sinks). This optimization is a case of domination based
pruning as described in Section 3.3.3. In the following we
define a new operator and highlight new features of our al-
gorithm different from DPOP.

For partial feeder trees, the projection operator can not
be used due to capacity constraints. The reason is that in
partial trees some nodes can not be evaluated, thus it is not
possible to check if the capacity constraint is violated or not.
If we project the variable X and select the best assignment
X = x∗ for each u, then we risk that the corresponding
feeder tree δ of util∗(u) will violate the capacity constraint
as the message moves up in the DFS tree. This will force
us to backtrack to the initial suboptimal choice of X. This
problem does not occur for complete trees, as in complete
trees each node, including the root can be exactly evaluated
and capacity constraints can be enforced.

To avoid such backtracking, we provide a CompositeProject
operator which is applied when conditions for domination
based pruning are not satisfied.

Akshat Kumar, Boi Faltings, Adrian Petcu • Distributed Constraint Optimization with Structured Resource Constraints

929

Definition 3 (CompositeProject). The ⊥c operator:
if Xi ∈ dim(UTILj

i), then UTILj
i ⊥c

Xi
is obtained by the

projection of Xi from UTILj
i as follows: for each instan-

tiation u of the variables in {dim(UTILj
i) − Xi}, a tuple

of UTIL values is formed in which each value corresponds
to an instantiation of Xi. That is, the utility util⊥c(u) for
the instantiation u in the matrix UTILj

i ⊥c
Xi

is given by

util⊥c(u) = 〈utilji (u, x1), . . . , utilji (u, xk)〉, where each xi is
an instantiation of Xi which has domain of size k.

For applying any operator such as
P

to such tuple of val-
ues, we apply it individually to each value in this tuple. The
side effect of CompositeProject operator is that combining
partial feeder trees gives rise to combinatorial explosion as
messages pass up the DFS tree. We use a number of tech-
niques to counter this effect. For example, a complete feeder
tree affects the the global solution only through its root (the
only uncertainty in such trees is how the root gets fed, rest
of the power path is known). Thus, in a UTIL message
we replace each such tree with a single node, its root, and
the cost of the total tree. The rest of the tree is stores lo-
cally at the current agent and an indexing scheme is used
to associate these stripped off trees with their root during
the final VALUE phase. As the UTIL messages move up
in the DFS tree more information is accumulated and many
partial trees become complete due to the application of

P

operator. Thus, this scheme can provide significant savings.
Further pruning is achieved by inconsistent and dominated
tree pruning to keep space requirements within manageable
limits as shown in the experiments section.

Phase 3 - VALUE propagation: This phase is a top-to-
bottom pass that assigns value to variables, with decisions
made recursively from the root down to the leaves. This
phase is initiated by the root agent once it has received all
UTIL messages from all of its children. Based on these UTIL
messages, the root assigns to its variable X0, the value v�

that maximizes the sum of its own utility and that communi-
cated by all its subtrees. In case of power networks, it selects
the assignment to the Direction variable that provides the
minimum cost feeder tree. It then sends the value message
VALUE(X0 ← v�) to every child. The process continues re-
cursively to leaves. At the end of this phase, the algorithm
finishes, with all variables being assigned their optimal val-
ues. For a distribution network, these assignments define
the minimum cost feeder tree. As per the assignment to Di-
rection variables, the position of the corresponding devices
are set.

5. EXPERIMENTS
We use the power network configuration benchmarks made

publicly available by Hadzic et al. [8]. These are realis-
tic power network instances provided by their contractor
NESA, a power distribution company in the Copenhagen
area, Denmark. We compare against their binary decision
diagram (BDD) based solver. For these instances, it was
possible to quantify the line load to a discrete range [0, 13].
We tested both, the quantification based model and the re-
source abstraction model on a windows workstation with
Intel dual core 2.4 GHz cpu, 1GB RAM. The quantification
based model had poor scalability, it could solve only the
smallest instance with 200MB space in around 30 min. We
did not implement the RCDCOP model because of its obvi-
ous complexity. The abstraction based model easily scaled

Instance
Name

Time
(sec)

Max Size
(Kb)

Total Size
(Kb)

BDD
(Kb)

std-diagram 0.6 13 50 7.3
1-6+22-32 0.9 58 121 31
Complex-P1 1 75 300 252
Complex-P2 1.1 98 525 418
1-32 1.3 155 808 4154
Large 99 3900 36000 -
Complex - - - -

Table 1: Space and runtime statistics

to solve large instances within few seconds (the execution
time is important, as in power networks when the lines fail,
only a few minutes are available to the operator to reconfig-
ure the network, otherwise a blackout will happen).

We enlist the modeling advantage our abstraction provides
over the BDD based approach. First, the BDD based solver
is quantification based and thus, suffers from the limitations
of such an approach. Their solver’s complexity is problem
domain dependent and can not extend to settings which re-
quire a large quantified domain for resources. Further, it is
not clear that how BDDs can be extended to other kinds
of distribution networks as they use power network domain
knowledge. On the other hand, our approach searches in
the space of feeder trees, which are generic to model any
kind of distribution network. Feeder trees can model prob-
lems where quantification may not be even possible, and its
complexity remains independent of the problem instances.
Second, their approach is centralized and precomputes all
the solutions offline without any optimality criterion. For
evolving and dynamic power markets their approach is not
suitable. Our model provides all the advantages of a dis-
tributed approach and can adapt readily to dynamic set-
tings.

Experimentally, we will compare the space usage of our
approach to compute the best configuration and the space
complexity of their solver. However, it should be noted that
their approach compiles the solutions offline, while our ap-
proach works in real time. Therefore, Hadzic et al. [8] do
not report the runtime for their offline compilation.

Table 1 shows the maximum message size exchanged be-
tween any two agents, total message size and the execution
time for our algorithm. The last column shows the results
reported in [8]. A - means that the instance was too large
for the algorithm to solve. For smaller and medium sized
instances (till Complex-P2) our algorithm was fast with the
largest message size a few Kbs. The instance Large which
has two power sources, 66 lines and 56 sinks and many cyclic
paths proved harder. The original BDD based approach too
could not compile this instance. They used several domain
specific ordering and scheduling heuristics to compile this in-
stance to 8483Kb. We did not employ any special technique
and still solved the task within a reasonable time. How-
ever, the instance Complex went beyond our reach. The
next section describes some techniques that allowed us to
nevertheless solve this instance.

5.1 Network Decomposition
We used a similar technique as in [8]. We divided the

network graph into 5 overlapping regions such that every
vertex belongs to exactly one region and each edge can be

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

930

P1

P2

P3

P4
P5

Figure 4: Complex: the largest test instance

part of at-most two regions, as shown in Figure 4. Next, we
provided feedback to our algorithm by giving information
about the shared edges’s state i.e. determining the direc-
tion of flow along that edge. After this step we were able to
run inference on all five regions (P1-P5) independently. The
max message size for P1 was 8Kb (t=.4sec), for P2 1.9Mb
(t=8sec), for P3 8Mb (t=102sec), for P4 2.6Mb (t=10sec)
and for P5 1Mb (t=2sec). Note that, treating regions in-
dependent of each other sacrifices the global optimality in
exchange for speedy network configuration.

6. CONCLUSION AND FUTURE WORK
In this work we addressed an important concept of re-

source constraints in distributed constraint optimization. We
examined the domain of distribution networks, which asso-
ciate a structure with resources in the form of Flow conser-
vation law and flow acyclicity. RCDCOP, the general frame-
work for handling resource constraints, can not handle such
resources as it fails to utilize the structure of such resources.
We provided two models which overcome this limitation of
RCDCOP. One is based on resource quantification which dis-
cretizes the resources. This model is simple to implement,
but fails to generalize and showed limited scalability in ex-
periments. However, based on the insights from the quan-
tification model, we provided a generic model for handling
resources in distribution networks. Our approach, based on
feeder trees, is generic enough to model any kind of distri-
bution network and unlike quantification based approach,
is problem domain independent. Using this model, we pre-
sented a distributed, dynamic programming based algorithm
to solve the optimal flow configuration problem. Experimen-
tally, we could solve industrial power network configuration
instances and provided competitive performance with a spe-
cialized solver for this problem.

Our work advances the applicability of the DCOP frame-
work and shows that by exploiting the problem structure,
DCOP algorithms can scale well to solve real life problems.
In our current and future work, we are working to further in-
crease the scalability by applying state-of-the-art techniques
in constraint networks such as AND/OR search and decision
diagrams in DCOP algorithms [9].

7. REFERENCES
[1] P. Bertoli, A. Cimatti, J. Slanley, and S. Thiebaux.

Solving power supply restoration problems with
planning via symbolic model checking. In ECAI, pages
576–580, Lyon, France, 2002.

[2] E. Bowring, M. Tambe, and M. Yokoo.
Multiply-constrained distributed constraint
optimization. In AAMAS, pages 1413–1420, Hakodate,
Japan, 2006.

[3] A. Chechetka and K. Sycara. No-Commitment Branch
and Bound Search for Distributed Constraint
Optimization. In AAMAS, Hakodate, Japan, May
2006.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[5] E. C. Freuder. A sufficient condition for
backtrack-bounded search. Journal of the ACM,
32(14):755–761, 1985.

[6] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward-bounding for distributed constraint
optimization. In ECAI, pages 103–107, 2006.

[7] J. Griffin and S. Puller. Electricity deregulation:
choices and challenges. University of Chicago Press,
Chicago, 2005.

[8] T. Hadzic, A. Wasowski, and H. Andersen. Techniques
for efficient interactive configuration of distribution
networks. In IJCAI, pages 100–105, Hyderabad, India,
2007.

[9] A. Kumar, A. Petcu, and B. Faltings. H-DPOP: Using
hard constraints for search space pruning in DCOP. In
AAAI, pages 325–330, 2008.

[10] R. T. Maheswaran, M. Tambe, E. Bowring, J. P.
Pearce, and P. Varakantham. Taking DCOP to the
real world: Efficient complete solutions for distributed
multi-event scheduling. In AAMAS, 2004.

[11] R. Mailler and V. Lesser. Asynchronous partial
overlay: A new algorithm for solving distributed
constraint satisfaction problems. JAIR, 25:529–526,
2006.

[12] T. Matsui, H. Matsuo, M. Silaghi, K. Hirayama, and
M. Yokoo. Resource constrained distributed constraint
optimization with virtual variables. In AAAI, pages
120–125, 2008.

[13] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. AI Journal,
161:149–180, 2005.

[14] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAI,
Edinburgh, Scotland, Aug 2005.

[15] S. Thiebaux and M. Cordier. Supply restoration in
power distribution system - a benchmark for planning
under uncertainty. In ECP, pages 85–96, 2001.

[16] S. Thiebaux, M. Cordier, O. Jehl, and J. Krivine.
Supply restoration in power distribution system - a
case study in integrating model-based diagnosis and
repair planning. In UAI, pages 525–532, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

